B U Department of Mathematics
Math 102 Calculus II

Fall 2001 Second Midterm

1. a) Let \(f(x, y) = \begin{cases} \frac{4xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \). Is \(f(x, y) \) continuous at \((0, 0)\)? Justify your answer!

Solution:

First notice that \(\lim_{(x,y) \to (0,0)} f(x, y) \) has a \(\frac{0}{0} \) type indeterminacy. Use polar coordinates:

\(x = r \cos \theta \) and \(y = r \sin \theta \) so that \(r^2 = x^2 + y^2, \ r \geq 0 \). We now have:

\[
\lim_{(x,y) \to (0,0)} f(x, y) = \lim_{r \to 0} \frac{4r^2 \sin \theta \cos \theta}{\sqrt{r^2}} = \lim_{r \to 0} 4r \sin \theta \cos \theta = 0
\]

Hence, \(\lim_{(x,y) \to (0,0)} f(x, y) = 0 = f(0,0) \). Thus, \(f(x, y) \) is continuous at \((0,0) \).

b) Prove or disprove that the directional derivative of \(f(x, y) \) in the direction of \(u + v \) at the point \(P(x_0, y_0) \) is equal to \(D_u f(x_0, y_0) + D_v f(x_0, y_0) \) where \(u \) and \(v \) are vectors.

Solution:

The equality holds if \(f(x, y) \) is differentiable at \(P \). Otherwise the equality does not necessarily hold. For example, the function \(f(x, y) \) of part (a) is constant along \(x- \) and \(y- \) axes so that \(D_i f(0,0) = D_j f(0,0) = 0 \) but \(D_{i+j} f(0,0) = 2\sqrt{2} \).

2. Find the point(s) on the graph of \(x^2 + 4y^2 + z^2 = 12 \) where the tangent plane is perpendicular to the line \(\frac{1-x}{2} = 1 - y = \frac{z-3}{-2} \).

Solution:

\((2x, 8y, 2z) \parallel (2, 1, 2) \Rightarrow (2x, 8y, 2z) = \alpha(2, 1, 2) \). Solving for \(x, y \) and \(z \) we get \(x = \alpha, \ y = \alpha/8, \ z = \alpha \) which should determine a point on the surface so that:

\[
\alpha^2 + \frac{\alpha^2}{16} + \alpha^2 = 12 \Rightarrow \alpha^2 = \frac{192}{33} \Rightarrow \alpha = \pm \frac{8}{\sqrt{11}}.
\]

So we get the points \(\left(\frac{8}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{8}{\sqrt{11}} \right) \) and \(\left(-\frac{8}{\sqrt{11}}, -\frac{1}{\sqrt{11}}, -\frac{8}{\sqrt{11}} \right) \).

3. a) Let \(f(x, y) \) and \(g(x, y) \) be differentiable functions. Show that \(\nabla(fg) = f\nabla g + g\nabla f \).

Solution:

\[
\nabla(fg) = (fg_x + gf_x)i + (fg_y + gf_y)j = f(g_x i + g_y j) + g(f_x i + f_y j) = f\nabla g + g\nabla f
\]
b) The plane \(2y - 3z = 8 \) intersects the cone \(z^2 = 4x^2 + 4y^2 \) in an ellipse. Find the highest and lowest points of intersection.

Solution:

\[
2y - 3z = 8 \Rightarrow z = \frac{2y - 8}{3}. \]

We wish to find the maximum and minimum values for the function
\[
z = f(x, y) = \frac{2y - 8}{3}
\]

subject to the constraint \(z^2 = 4x^2 + 4y^2 \). Hence

\[
\left(\frac{2y - 8}{3} \right)^2 = 4x^2 + 4y^2 \Rightarrow y^2 - 8y + 16 = 9x^2 + 9y^2.
\]

\[
g(x, y) = 9x^2 + 8y^2 + 8y - 16 = 0
\]

\[
\nabla f(x, y) = \lambda \nabla g(x, y)
\]

\[
\frac{2}{3}j = \lambda (18x\mathbf{i} + (16y + 8)\mathbf{j}),
\]

which means

\[
18\lambda x = 0 \quad \text{and} \quad (16y + 8)\lambda = \frac{2}{3}.
\]

So, either \(\lambda = 0 \) or \(x = 0 \). Since \(\lambda = 0 \) is inconsistent with the second equation it follows that \(x = 0 \). Substituting in \(g(x, y) \), we get

\[
y^2 + 8y - 16 = 0 \Rightarrow y^2 + y - 2 = 0 \Rightarrow y = 1, y = -2. \Rightarrow z = f(0, 1) = -2 \text{ and } z = f(0, -2) = -4.
\]

The highest point of intersection is \((0, 1, -2)\) and the lowest point of intersection is \((0, -2, -4)\).

4. Find \(\iint_R \frac{\sin x}{x} \, dA \), where \(R \) is the triangle with vertices \((0, 0), (2, 0)\) and \((2, 2)\). (Sketch the region \(R \).)

Solution:

\[
\iint_R \frac{\sin x}{x} \, dA = \int_0^2 \int_0^x \frac{\sin x}{x} \, dy \, dx = \int_0^2 y \frac{\sin x}{x} \bigg|_{y=0}^{y=x} \, dx = \int_0^2 \sin x \, dx
\]

\[
= -\cos x \bigg|_0^2 = 1 - \cos 2.
\]