1.) Find the volume of the part of the sphere of radius 3 that is left after drilling a cylindrical hole of radius 2 through the center.

Solution:

The sphere has equation: $x^2 + y^2 = 9$

In polar coordinates, $r^2 + z^2 = 9 \Rightarrow z = \pm \sqrt{9 - r^2}$

$$V = \int_0^{2\pi} \int_2^3 \left[\sqrt{9 - r^2} - (-\sqrt{9 - r^2}) \right] r dr d\theta$$

Let $u = 9 - r^2 \Rightarrow du = -2r dr$

$$\Rightarrow V = -\frac{1}{2} \int_0^{2\pi} \int_5^{0} 2u^{1/2} du d\theta = -\frac{2}{3} \int_0^{2\pi} -5^{3/2} d\theta = \frac{20\sqrt{5}\pi}{3}$$
2.) Let S denote the set of topless and bottomless right circular cylinders of fixed non-zero surface area A. Use Lagrange multipliers to prove or disprove that the set S has an element with maximal volume. If your answer is positive then compute the maximal possible volume in terms of only A. If your answer is negative tell us precisely the lack of which properties of the solution set of $A = 2\pi rh$ is responsible for the non-existence. (Note that the surface area of the cylinder of radius r and height h with no top and bottom is $2\pi rh$.)

Solution:

$$S(r, h) = 2\pi rh = A \Rightarrow g(r, h) = 2\pi rh - A$$

$$V(r, h) = \pi r^2 h \Rightarrow f(r, h) = \pi r^2 h$$

$$\nabla f = 2\pi rh \mathbf{i} + \pi r^2 h \mathbf{j}$$

$$\nabla g = 2\pi h \mathbf{i} + 2\pi r \mathbf{j}$$

$$\nabla f = \lambda \nabla g \Rightarrow 2\pi rh = \lambda \cdot 2\pi h \quad \text{and} \quad \pi r^2 = \lambda \cdot 2\pi r$$

$$r = \lambda, r = 2\lambda \Rightarrow r = \lambda = 0.$$

But $r = 0$ gives $S(r, h) = 2\pi \cdot 0 \cdot h = 0$. But the surface area is nonzero. So using the Lagrange multiplier method we conclude that NO such maximal volume cylinder exists.

Note that the variables r, h are such that $r > 0, h > 0$. Hence, the solution set ($A = 2\pi rh$) is an unbounded set. For the existence of extremum, solution set must be closed and bounded. Also, $V = \frac{Ar}{2}$ and since $r > 0, V \rightarrow \infty$ and so no cylinder with maximal volume!
3.) Transform the following integral into spherical coordinates throughly but do not evaluate.

\[\int_{-2}^{0} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2-y^2}} \int_{0}^{\sqrt{4-x^2-y^2}} z^3 \sqrt{x^2 + y^2 + z^2} \, dz \, dy \, dx \]

Solution:

Let \(I \) be the value of the given integral.

\[0 \leq z \leq \sqrt{4 - x^2 - y^2} \Rightarrow \text{The solid over which we integrate is bounded below by } z = 0 \text{ (xy-plane) and above by the sphere } x^2 + y^2 = 4. \]

\[-\sqrt{4 - x^2} \leq y \leq 0 \text{ and } -2 \leq x \leq 0 \text{ tell us that the projection of this solid onto xy-plane is the quarter of the circle: } x^2 + y^2 = 4 \text{ in the third quadrant.} \]

In spherical coordinates: \(z = \rho \cdot \cos \phi \) and \(\rho = \sqrt{x^2 + y^2 + z^2} \)

\[I = \int_{\pi}^{3\pi/2} \int_{\pi/2}^{\pi/2} \int_{0}^{2} (\rho \cdot \cos \phi)^3 \cdot (\rho) \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \]
4.) Evaluate $\int \int_R \sin(y^3) \ dA$, where R is the region bounded by $y = \sqrt{x}$, $y = 2$ and $x = 0$.

Solution:

Let $I = \int \int_R \sin(y^3) \ dA = \int_0^2 \int_0^{\sqrt[x]} \sin y^3 \ dy \ dx = \int_0^2 \int_0^y \sin y^3 \ dy \ dx$

This last integral seems to be more easier to take.

So, $I = \int_0^2 [x \sin y^3]_0^y \ dy = \int_0^2 y^2 \sin y^3 \ dy$

Let $u = y^3$, then $du = 3y^2 \ dy$ and therefore,

$I = \int_0^2 \sin u \ du = - \left[\frac{\cos u}{3} \right]_0^y = - \left[\frac{\cos y^3}{3} \right]_0^y = 1 - \cos \frac{8}{3}$